High level activation of vitamin B1 biosynthesis genes in haustoria of the rust fungus Uromyces fabae.
نویسندگان
چکیده
In the rust fungus Uromyces fabae, the transition from the early stages of host plant invasion toward parasitic growth is accompanied by the activation of many genes (PIGs = in planta induced genes). Two of them, PIG1 (= THI1) and PIG4 (= THI2), were found to be highly transcribed in haustoria, and are homologous to genes involved in thiamine (vitamin B1) biosynthesis in yeast. Their functional identity was confirmed by complementation of Schizosaccharomyces pombe thiamine auxotrophic thi3 (nmt1) and thi2 (nmt2) mutants, respectively. In contrast to thiamine biosynthesis genes of other fungi that are completely suppressed by thiamine, THI1 and THI2 expression was not affected by the addition of thiamine to rust hyphae grown either in vitro or in planta. Immunoblot analysis revealed decreasing amounts of THI1p in extracts from spores, germlings, and in vitro-grown infection structures with increasing time after inoculation. Immunofluorescence microscopy of rust-infected leaves detected high concentrations of THI1p in haustoria, and only low amounts in intercellular hyphae. In the sporulating mycelium, THI1p was found in the basal hyphae of the uredia, but not in the pedicels and only at very low levels in uredospores. These data indicate that the haustorium is an essential structure of the biotrophic rust mycelium not only for nutrient uptake but also for the biosynthesis of metabolites such as thiamine.
منابع مشابه
A putative amino acid transporter is specifically expressed in haustoria of the rust fungus Uromyces fabae.
A cDNA library constructed from haustoria of the rust fungus Uromyces fabae was screened for clones that are differentially expressed in haustoria. One family of cDNAs (in planta-induced gene 2 [PIG2] was isolated and found to encode a protein with high homologies to fungal amino acid transporters. A cDNA clone containing the complete coding region of PIG2 and the corresponding genomic clone we...
متن کاملCharacterization of a developmentally regulated amino acid transporter (AAT1p) of the rust fungus Uromyces fabae.
summary In the rust fungus Uromyces fabae, invasion of the host plant and haustorium formation are accompanied by the activation of many genes (PIGs =in planta induced genes). In addition to the previously described AAT2 (PIG2), AAT1 (PIG27) was found to encode a protein with a high similarity to fungal amino acid permeases. AAT1 transcripts are present in germinated hyphae and throughout the m...
متن کاملThe role of haustoria in sugar supply during infection of broad bean by the rust fungus Uromyces fabae.
Biotrophic plant pathogenic fungi differentiate specialized infection structures within the living cells of their host plants. These haustoria have been linked to nutrient uptake ever since their discovery. We have for the first time to our knowledge shown that the flow of sugars from the host Vicia faba to the rust fungus Uromyces fabae seems to occur largely through the haustorial complex. On...
متن کاملPlasma Membrane H+-ATPase Activity in Spores, Germ Tubes, and Haustoria of the Rust Fungus Uromyces viciae-fabae
Using plasma membrane-enriched vesicles, the properties of the H+-ATPase (EC 3.6.1.35) from the rust fungus Uromyces viciae-fabae were studied. The enzyme is strictly Mg2+-dependent and is inhibited by vanadate. The pH-optimum is at 6.7. By Western blot analysis using a monoclonal antibody against corn plasma membrane H+-ATPase a polypeptide of approximately 104 kDa could be detected. The vanad...
متن کاملMicroarray analysis of expressed sequence tags from haustoria of the rust fungus Uromyces fabae.
Rust fungi are plant parasites which colonise host tissue with an intercellular mycelium that forms haustoria within living plant cells. To identify genes expressed during biotrophic growth, EST sequencing was performed with a haustorium-specific cDNA library from Uromyces fabae. One thousand seventeen ESTs were generated, which assembled into 530 contigs. Several of the most frequently represe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular plant-microbe interactions : MPMI
دوره 13 6 شماره
صفحات -
تاریخ انتشار 2000